
OCTOBER 2020
EBS 124J
COLLEGE GEOMETRY
1 HOUR 30 MINUTES

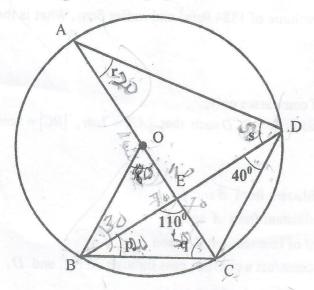
UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

t=80°

COLLEGES OF EDUCATION
FOUR-YEAR BACHELOR OF EDUCATION (B.ED)
FIRST YEAR, END-OF-SECOND SEMESTER EXAMINATION, OCTOBER, 2020

OCTOBER 19, 2020

COLLEGE GEOMETRY

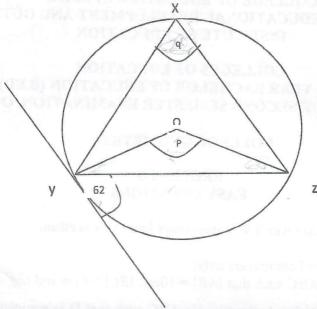

2:30 PM - 4:00 PM

SECTION B EASY QUESTIONS

Answer TWO questions from this section.

1. Using a ruler and a pair of compasses only;

- a. Construct triangle ABC such that |AB| = 10cm, |BC| = 6cm and angle ABC = 45° .
- b. Locate the point 'D' inside the triangle ABC such that D is equidistant from AB and AC and 5cm from B.
- c. i. Construct the perpendicular to AC through D. Label, Y, the point of intersection of the perpendicular from D and AC.
 - ii. Measure AY
- 2. In the diagram, A, B, C and D are points on the circle with Centre O. If angle BDC = 40° and BEC = 110° , and the angle marked: p, q, r, s and t.


Page 1 of 3

- a. Find the perpendicular distance of the point A(-3, 2) from the line 2x 5y = 6. (5marks)
- b. In the diagram below, 0 is the centre of the circle and the angle between the tangent and the chord yz is 62°.
 - i. Find the value of angle xyz.

(5marks)

ii. Calculate the value of (q+p)

(5marks)

c. Find the ratio in which P(2,3) divides the lines joining A(4,3) and B(-1,3).

4.

- a. Find, correct to two significant figures, the radius of a sphere whose surface area is 556cm^3 (Take $\pi = \frac{22}{7}$).
- b. The end points of a distance of a circle are (-2,3) and (3,4). What is the equation of the circle?
- c. A solid cylinder has volume of 1884.9cm³ and radius 5cm. What is the total surface area of cylinder?
- 5. Using ruler and a pair of compasses only,
 - a. construct the quadrilateral ABCD such that |AB| = 7cm, |BC| = 5cm, $\angle ABC = 120^{\circ}$ and |AD| = |AC| = |DC|
 - b. construct the locus
 - i. l_1 of points equidistant from B and C
 - ii. l_2 of points equidistant from A and B
 - c. i. locate O, the point of intersection of l_1 and l_2
 - ii. with O as centre, construct a circle to pass through A, B, C and D.

d. Measure:

- i. ∠BCD
 - ii. the radius of the circle.
 - iii. calculate the area of the circle in c (ii). (Take $\pi = \frac{22}{7}$)
- e. Find the equation of the tangent to the circle $5x^2 + 5y^2 3x 2y 23 = 0$ at the point (2,1)